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Quantum tunneling fragmentation model
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A nonthermal quantum mechanical statistical fragmentation model based on tunneling of particles through
potential barriers is studied in compact two- and three-dimensional systems. It is shown that this fragmentation
dynamics gives origin to several static and dynamic scaling relations. The critical exponents are found and
compared with those obtained in classical statistical models of fragmentation of general interest, in particular
with thermal fragmentation involving classical processes over potential barriers. Besides its general theoretical
interest, the fragmentation dynamics discussed here is complementary to classical fragmentation dynamics of
interest in chemical kinetics and can be useful in the study of a number of other dynamic processes such as
nuclear fragmentation.

PACS numbefs): 05.40—a, 64.60.Ht, 73.40.Gk, 25.70.Mn

I. INTRODUCTION namics leads to the fragmentation of the system. In this clas-
sical fragmentation dynamics, the thermal fluctuations con-
Fragmentation is one of the most studied physical phetrol the likelihood that the chemical bonds will break and as
nomena, with applications ranging from crushifif and  a consequence they also control the evolution of the frag-
grinding[2] of solids to droplet breakuf8], and disassembly mentation pattern.
of heavy nucleaf4] or large moleculaf5] structures in high- In the present paper we are, on the contrary, interested in
energy collisions, among many othd@. Usually, experi-  the study of a fragmentation model controlled by quantum
ments in fragmentation are modeled by simple geometrigyctuations at zero temperature. In this model the dynamics
algorithms([7] or by phenomenological approachés9] in  obeys different statistics, with quantum tunneling of particles
order to describe the statistical features of the processegrough potential barriers replacing the classical transition
Only classical concepts are used in these descriptions and gtobability of Eq.(1). Tunneling is one of the most impor-
general, quantum processes have not been explicitly consigant consequences of the wave properties of matter and had
ered. As a further example of a classical fragmentation dyits first successful application in nuclear fragmentation phe-
namics we have the pioneering numerical simulations renomena such as decay[13,14 and spontaneous fission, in
ported in Refs.[10] and [11], which consider reactive general. Besides its general theoretical interest, the fragmen-
processes in the kinetic and diffusion-limited regimes on aation dynamics discussed here is complementary to the clas-
porous media. Along these classical lines, we have intrOSicaj fragmentaﬁon dynamics based on Eq, and perhaps
duced in a previous publicatidii2] a fragmentation model may be useful in the study of a number of other dynamical
of interest in chemical kinetics and related phenomena, e.gprocesses such as fragmentation of heavy nuclei in h|gh en-
the attack on a piece of metal by corrosive rain, in which thegrgy collisions.

reactivity or probabilityp; of a successful attack at a lattice  |n Sec. Il, we describe the quantum tunneling fragmenta-

sitei is given by the Boltzmann factor: tion model and give details of our Monte Carlo simulations
with this dynamics. In Sec. Ill, we present the numerical
pi=exp —E;/kgT), (1) results and make a comparison with other fragmentation dy-

namics. Our major conclusions are summarized in Sec. V.
with Ej=q;E, q; the coordination number of site E the
characteristic energy of each of thechemical bondgsg the
Boltzmann constant, and the temperature. At each time | QUANTUM-TUNNELING FRAGMENTATION MODEL
step, a site on the lattice is chosen at random. The atom or
molecule at that site changes its chemical status, and is elimi- A. Description of the model

nated off the lattice(i.e., it diffuses from the lattidewith The quantum tunne"ng fragmentati@TF) model stud-
probability p; . Obviously, the continued action of this dy- jed here describes the decay and fragmentation of a large
system via tunneling of particles of massand energyE
through potential barriers of a characteristic heiylt>E
*On leave from Laboratory for Theoretical Physics, Institute forand variable length.; . In this case, the usual quantum me-
Nuclear Sciences Virg P. O. Box 522, YU-11001 Belgrade, Yu- chanical probability for tunneling through the barrier is con-

goslavia. Electronic address:borko@npd.ufpe.br trolled by the factof15]
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subsequently places all the occupied neighboring sites on the
boundary, the boundary itself dynamically changes. The
probability of tunneling therefore depends on a global, dy-
namically changing variable. The computational effort
needed for such an algorithm dramatically increases as com-
pared to the local models, since for every lattice site one
needs to checkin principle) all the other sites in order to
determine the closest boundary point.

To optimize the use of the available hardware resources,
we have developed an algorithm using linked lists, to keep
track of the boundary sites. More precisely, information as to
which sites currently belong to the boundary is kept sepa-
rately, in the form of a list of elements that point to each
other. The first boundary element points to the second, the
second to the third, and so on until the last, which points to
the first. Starting from any of the boundary sites one cycles
through the whole boundary without the need of visiting the
) non-boundary sites. When a new site needs to be added to
The QTF model obeys the following rules: _ the boundary, the chain is brokeéat an arbitrary position

(i) Asite belondg|_ng to ad-dimensional square lattice of 5 reconnected to include the new site. For example, to add
S'Z?_('”'t'a_| m_agss) L" is chosen at random at each time step., sjte C between siteé\ and B, whereA was pointing toB,
. .(n) If site iis un(_)ccup|ed, it remains so. If it is occupied, gpe simply makeg point to C and C to B, leavingB un-
it is unoccupied with the probability given by EQ). The  changed. Similarly, to remov€ from the ACB list, one
p_rocedure is repgated un.tll all sites are.va'cant. M(_)re PrémakesA point to B, while the pointer ofC is set to zero.
cisely, the tunneling explained at theAbegmnlng of this para- Determining the fragment size distribution along the
graph is performed along the directianthat minimizes the simulation poses another challenge from the computational
distancel ;= |_i(>‘<) from the sitei to the system’s boundary point of view, which is, however, common with the classical
as illustrated in Fig. 1, in order to maximize the tunnelingfragmentation models. We have used the Hoshen-Kopelman
probability (2). algorithm developed for numerical studies of percolation

Thus while in the classical simulations of R¢L2], the  phenomen&l6,17), which appears to be the most efficient of
reactivity or probability of a successful attack depends onlysuch algorithms developed up to date.
on thelocal variableE;= q;E, in the QTF modelp; as given The simulation dynamics is rather sensitive to the quality
by Eq. (2) is a function of theglobal variabIeLi(i). This  Of the random n_umber generator. The generators which pro-
variable depends on both the sitand the boundary of the duced notab!y’dlfferent results from each other falled_ to pass
system/fragment and evolves continuously, changing witti’® Marsaglia’s Diehard battery of tes[48]. Our final
the connectivity of the system and its fragmentation. Afterchoice is the combined multiply-with-carry generator with
each tunneling the system is reduced by one unit of mass. Period exceeding 2 , ,

In principle, two types of different physical situations can  Another important point turns out to be the choice of the
be associated with ruld) of the QTF model. First, we could Ccharacteristic length scale, in Eq. (2). If it is taken to be
have a direct process in which the tunneling particle is d00 smallfi.e., if (Vo—E) is largg, the fragmentation pro-
quantum particle at site It tunnels fromi, leaving the sit¢ €SS is confined to the surface of the sample, with a single
unoccupied and reducing the mass of the system by one unl@rge cluster. On the other hand, lip is very large[(Vq
Secondly, we have an indirect process in which we could” E) smalll, fragmentation takes place throughout the
assume, in the spirit of Born-Oppenheimer approximatiors@mple volume, resembling the classical thermal model of
[15], that the tunneling particle is some kind of lighter par- Ref.[12] at infinite temperature. The situation that most de-
ticle that bounds heavier clusteisf unit masg localized ai ~ Viates from the classical models is obtained whers taken
to the entire system. If the lighter particle tunnels, the heavy© be considerably smaller than the sample &izeut not too
particle is no longer bound to the system and it is free to ggsmall- _ _
away reducing the mass of the system by one unit. Finally, !n the present study on fragmentation we consider the
we note in passing that the physical processes underlying thériable diversity of fragment® (t), which gives the num-
QTF mode| are possible in any Space dimensjpcontrar“y ber of different typeS of fragments. The d|VerS|ty of frag'
to the classical model of Reff12], which is more physical in  mentsD(t) is defined by
one and two space dimensions.

FIG. 1. llustrates the distande=L;(x) used in Eq.(2): L; is
the shortest distance from sitéo the boundary of the system.

D<t>=§ gin(s,t)], 3)
B. Simulation

The simulation itself is conceptually simple: lattice siteswhere n(s,t) is the distribution function of fragments of
are visited randomly, and removed with probabilitygiven =~ masss at timet, and 6(x) is the step-function satisfying
by Eqg.(2). As described above, the probability of successfuld(x) =1, for x>0, andf(x) =0, for x<0. The evolution of
attackp;, on the particle at sit¢, depends on its distance diversity with time in several situations is shown in Fig. 2.
from boundary at the moment of attack. As any such evenbata are shown for a simulation performed on a 8522
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FIG. 3. Typical distribution of fragments in a single realization
of the 2d QTF model at the time of maximum diversity of sizes for
a system of initial mass 64

FIG. 2. Diversity of fragment®(t) as a function of time, for
characteristic length choicdsy=1 (+), Lg=2 (), Log=4 (4),
andLy=8 (O). These results refer to QTF model simulations on
square lattices with 5£2sites, and the statistical functions are av-

erages over eight samples. an impulsive force, after an explosion or collision, or after

some other particular process of brea@19-21. From
. . . . B the practical point of view, the cumulative distribution of
system in two dimensions, foko=1(+),Lo=2 (1), Lo fragmentsN(s), which is the number of fragments with mass

=4(4), and L°:8. (.O)' It is seen that the curves fdr greater thars, is first obtained and then the differential mass
=1 andLy=2 exhibit a platgau-type proad. maxima ratherdistribution n(s) is found. If N(s)~s~*, we haven(s)
than a clear pronounced maximum in diversity. This is duetoNS_T with 7— x+ 1. However. these séaling relations are
the fact th_at wherL, IS smal! In comparison W'th‘ the ot much informative because, in spite of the nonuniversality
fragmentation process is confined to a narrow region aroungs 7, it can be shown under very general conditig®®] that

the surfacg, while th(_a bulk IS praptmglly unaffected by themany classes of completely different fragmentation dynam-
fragmentation dynamics. This region is formed on the ver

Yics lead to onl iati i

L ) ; ; AT y a small variation of (typically 1.7<7
beginning of the simulatiofcorresponding to the initial rise e P ; -

of givers%y) after which it g?ifts atpconsta?nt rate towards the <2). T.O avoid this Insensitivity to dynamlcs, other_ statlstlcal_
interior(cor,responding o the plateatFinally, when the op- quantities sh_ou_ld be mv_estlgated in fragmentation experi-
posite sides of the affected region meet at the center of thments, but this is not a simple matter. Recently, we made an

system, the diversity rapidly decays. Increasing the CharaCgffort in this direction by studying the statistics of the diver-

teristic lengthL , increases the width of the affected region, Sity of fragments in a simple fragmentation experimiet.

. . i . In the present paper, we report the results of a detailed
yielding a sharp dlvers_lty peak, Qn the_other hand, gfis statistical study of the QTF model in two and three dimen-
taken o b_e too _Iargeém comparison withL), t_he whole ._sions. The differential distribution of fragments(s), as
system is immediately exposed to fragmentation dynamlcsweII as the diversity of fragmentd(t), the total mass
and distance of a certain point from the boundary ceases tﬁl(t) and the total number of fragmer’nN(t) and other'
be a relevant parameter. After extensive initial tests on sys ¥ '

tems of various sizes in both two and three dimensions Wétatistical functions, such as the mass concentrated at the
L . ' WHoundaries of the systerB(t), as a function of the time are
have opted fot,=L/64, which in all cases yields a reason-

ably sharp diversity maximum, and is on the other hand suffJllso investigated.

ficiently removed from the classical model. ,
Simulations were performed on a 64-bit UltraSparc HPC A. QTF model in d=2
3000 SUN station, investing several hundred hours of CPU In order for the reader to develop some insight about the
time. For each of the studies, 16 to 32 simulations wereQTF model, we show in Fig3 a typical distribution of frag-
performed independently to reduce statistical fluctuationsments obtained in a single experiment, at the time of maxi-
Finally, an averaging was taken over these independemhum diversity of sizes of fragments, for a simulation with a
simulations. The largest sample sizes that we were able teystem of initial mass 64
study are 1024 1024 in two dimensions, and 8464X 64 in In Fig. 4 we show the total mask/|(t) (A), the mass on
the three-dimensional case. the boundary or total perimeteB(t) (V), which is defined
as the number of occupied sites with less than four nearest-
neighbors, the total number of fragmentgit) (O), and the
diversity of fragmentsD (t) ((J), defined by Eq(3). We can
Most experiments in fragmentation examine mainly thesee from these plots
mass(size distribution of fragmentsn(s), which gives the
number of fragments of massize s after the application of B(t)~t#, B=0.95+0.05, O.Olst/tDmast.ZS (4)

Ill. RESULTS AND DISCUSSION
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A rarceemm— ] can notice that from Eqs(5) and (6) we get dM(t)/dt

: E =d[N(t)(s(t))]/dt~(r—2)t* 172 However, as can be
seen from Fig. 4, the scalings in time fd(t) and(s(t)) are
valid in an interval where In M(t)/d In t=[t/M(t) ]JdM(t)/dt is
quite small and, as a consequenee;z, in a first approxi-
mation. On the other hand, the total perimeB¢t) ~t# [Eq.
(4)] can also be expressed &t)~N(t)(s(t))“~t" %
where(s(t)) is the perimeter for the average fragment, and
a<1. Equationsg(4)—(6) leading toB=v— az are compat-
ible with a perimeter exponent=0.7=0.1, a result that is
somewhat larger than the Euclidean value=(d—1)/d

100000—5
10000—E
M,BN,D 1

1000

100 3

10 =1/2, ford=2.
“ENE As the variable diversity of fragments plays an important
/‘5- oo - ] role in fragmentation processes, it seems opportune to com-
e e 1o 000 ment here on its physical meaning. The concept of diversity
t has been used in an increasing number of scientific works in

connection with biologica[23] and volutionary[24] prob-
FIG. 4. The total massM(t)(A); the mass on the boundary, |ems, as well as in relation to self-organization, cellular au-
B(t)(V); the total number of fragmentbi(t) (O); and the diversity  tomata[25], and fractals[26], among others. In fluid me-
of fragments,D(t)(OJ), as a function of the time, for the QTF chanics, and in many other physical phenomena, complex
model ind= 2. These results refer to simulations on square latticeyehavior is associated with a spatial inhomogeneity, i.e.,
with 1024 sites, and the statistical functions are averages on 16yith a diversity in size scalé®7]. In the last few years, an
samples. effort has been made to classify complex configurations
. . . . . which often arise from simple algorithms, as well as to de-
wheretp  is the time whereD(t) is maximum, i.e., the fine measures of complexity28]. Recently, we have pro-
time at which there exists the largest number of length oposed that the diversity of size of fragments defined in Eq.
mass scales. The total number of fragments, on the othgs) is a good variable to measure the complexity in fragmen-
hand, satisfies tation experiment$29]. Despite its intrinsic and technologi-
, cal relevance, the diversity of size in fragmentation processes
N(O)~t", »=3.7:0.2, O'OKt/tDmafl' ) is a relatively unknown subject since it cannot be easily de-
_ _ _ ) o rived from the equations underlying the dynamics. In frag-
i.e., the dynamic scalings iB(t) and N(t) coexist in the  mentation, the diversitydefined by Eq(3)] first increases,
interval 0.0&t/tp <0.28 in which the average fragment then attains its maximum when the system assumes the most

size(s(t))=M(t)/N(t) behaves as complex configuration, and later it decreases adaia.
- Computer simulations for several fragmentation dynamics
(s(t))~t™% z=3.9, (6)  have shown that in the space of lowgighe) dimension a

o o _ ~_large diversity is easilyhardly) generated, however, it is
as indicated in Fig. 5. It can be noticed t.hat the scaling ing|gq quickly(slowly) destroyed29]. From the experimental
(s(t)) extends over almost five decades(s). The reader point of view, only recently the diversity of size has been
examined for the first time in a fragmentation experiment of
brittle solids under the application of a repeated impulsive
] force[22], and severalscaling relations involving this vari-
able were observed, in agreement with previous results ob-
E tained with numerical simulations.

Although D(t) given by (3) does not present dynamic
scaling, there are interesting relationships involving the
] maximumbD ., of this quantity. First of all, it can be noticed
from Fig. 4 that the maxima d(t) andD(t) occur near the
] same timetDmax. This particular time, in which the number of

4 length or mass scales is maximum depends on the lattice size
E L as

1000000 < oTo "\ "t v T v v Ty T Ty

100000

10000
<S>

1000

100

tp  ~L% (7)

max

foo0 o000 1000000 10000000 as shown in Fig. 6 for 32L<1024. Thus, as the size of the
t system increases, the system spends proportionally more
time to attain the state of largest diversity of length scales.

FIG. 5. The time dependence of the average fragment &ze, FurthermoreD obeys the following scalings:
max .

for the simulations of Fig. 4s) scales a$™*0.08<t/t, <1 (see

Sec. Il A for detail3. The straight line has the slopez=-3.9 s
+0.2. D max~ Bmax’ (8)
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FIG. 6. The time needed to reach the maximum diversity of max
sizes,tp__, as a function of the size of the lattice. The straight

line represents the best fi§ _~L"%*9%(32<L<1024) to the data.

FIG. 8. The dependence of the maximum diversidy,.,, with
the maximum of the total number of fragmenh,,,, for 32<L
=<1024. The straight line represents the best fit to the data and has
D max N2 (9)  a slope of 1/2 with a 95% confidence limit. See Sec. Il A for
details.
with §=0.5=0.05, as indicated in Figs. 7 and 8, respec-
tively. N,ax must be an extensive variable in the thermody- For the sake of completeness it is interesting to remark
namic limit, thus N,,~L? and, as a consequencB,,,, that the value of the exponentobtained in the QTF model
~Bﬁf§x~L. [Eq. (10)] is in the same universality class of a number of
The distribution functiom(s) of fragments of mass at  dynamical problems that seem completely unrelated, e.qg., the
time of maximum diversity for a system of initial mass fragmentation of brittle platelike objec{22,30, the distri-
1024 is shown in Fig. 9. The data in this figure correspondbution of undissolved metal islands in pitting corrosj@dl,
to an average over 16 equivalent experiments. As we can s@d the fragmentation of invasion percolation like structures
in Fig. 9, the simulation data lead to a power law along twoin 2d fluids[32], among others.

decades irs, with To illustrate the differences among the critical exponent
for different values of mass, in Fig. 10 we exhibit the time
n(s)~s 7, 7r=1.7+0.1. (10 dependence ai(s,t) for s=1, 2, and 4. From this figure, we

obtain the scaling

1000 T ———— T ——

100000 pr—r—r—rrrr ———r—rrrT ————rrrrry

10000 |

100 4

D n(s)

max

100 E

10F 3

104 3 3

T LA | M ML | M AL | ' L
100 1000 10000 100000 1 bl L -l
1 10 100
Bmax S
FIG. 7. The maximum diversity of sizeB,,.,, scales with the FIG. 9. The differential distribution of fragments of sigen(s),

maximum mass on the boundaB,,., as Dmax~Bﬁf§x, for 32<L at the time of maximum diversity, for the QTF modelds2 on a

<1024. The straight line has a slope of 1/2 with a 95% confidencesystem of initial mass 1024 The straight line gives the best fit to
limit. the datan~s™7,7=1.7=0.1. See Sec. Il A for detalils.
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. . FIG. 11. The same data as in Fig. 4, shown on a semilogarithmic
FIG. 10. The time dependence of the distribution of fragments - .
n(s.t) for fragments of siz&=1 (O), 2(A), and 4(1), obtained scale.M(t)(A), B(t)(V), andN(t)(O), clearly exhibit exponential

from simulation on a lattice of 1024sites, avaraged over 16 decay "’.It Iargg times, whilg (t) (L), shows power law behavior, as
samples. The continuous line represents the integral funbtioh shown in the inset.
Each sizes is associated with a different dynamic exponentas
explained in Sec. lll AEqg. 1J. The exponentr exhibits a small variation in the cases
dr=0 andd;=1. In both casess lies in the narrow interval
ng(t)~t%s, with ws=ws?, w=3.7, y=0.30. (11 1.6=<7<2.1. A detailed examination of the simulation data
of the present article and also of Ref¢2,35,36 seems to
Equation(11) shows that a single exponentcannot account indicate that ford=2,r=3.7, for dr=0, and »r=1.1, for
for the dynamiC evolution of the entire distribution of frag' dT:]" irrespective the dynamics_ Furthermoze‘]uctuates
ments in the scaling region. A sequence of exponents  in the interval 3.5-3.9 for dr=0, but is confined neaz
one for each .siz.es _(an infin.ite family of exponents in. the -1 .3, ford;=1, irrespective of the dynamics. In fragmen-
thermodynamic limil. — ), is needed as, e.g., in multifrac- tation dynamics with diffusive attacksl{=1), one has the
tal [33] and multiscalind 34] phenomena in statistical phys- exponenty of Eq. (11) equal to zero, i.e., for these dynamics
Ics. _ _ _ _ ws=w=v is independent os.

It is interesting to observe that scalifgl) is essentially Finally, we briefly address the question of the large time
the same result obtained with the classical fragmentation dyyehavior of the quantities under study. In Fig. 11 we show
namics of Ref[12], where the probability of successful at- M(t)(A), B(t)(V), N(t)(O), and D(t)(), on the semi-
tacks is controlled by the Boltzmann factor as in Ef). logarithmic scale. It is seen th&t(t), B(t), andN(t) decay
Also, the exponents in Eq. (10) and v in Eq. (5) are the  gxponentially at large times. In the ins&i(t) is shown on
same exponents reported in REF2]. The exponenz=3.9  the |og-log scale for times for which practically the whole
of Eq. (6) is somewhat larger than the classical exporent mass of the system is distributed on the boundary, indicating

=3.5 of Ref.[12]. Thus, among the four important expo- g power-law behavior of diversity at large times.
nents describing the scaling laws in fragmentation dynamics

(v, z, 7, andw), only the dynamic exponert presents a
small deviation from the classical values. B. QTF model in d=3

The fragmentation dynamics studied in the present article Now, let us turn to the results of the QTF model in the
and in Ref[12] have in common the fact that the defects, Orphysical 31 space. In Fig. 12 we shoW (t)(A), B(t)(V),
the attack that lead to the fragmentation of the original Man(t)(O), andD(t). In contrast to the @ simulations, the
trix areuncorrelatedpoint defects, i.e., they have topological scaling in time ofB(t) disappears befor&(t) attains its

dimensiond;=0. Other fragmentation dynamif85,36|, us-  ayimum valueB, .. However,N(t) continues to obey the
ing extended(diffusive) defects as random walk@.e., se- scaling

guences of highlyeorrelatedpoint defects withd;=1) give

quite different values for the exponentsz, andw, when N(t)~t", »=4.0+0.2, O.kt/tp <1. (12
compared with the cagiy=0. Physically, the two classes of e

fragmentation dynamics are quite different. In the first case

(dy=0), it is the coalescence of a number of uncorrelatedrhe absence of scaling B(t) for d=3 may be due to the
point-defects, e.g., the uncorrelated voids or single brokeexistence of an upper critical dimension for the QTF model,
chemical bond, that generate new closed interfaces enclosingith B(t) exhibiting no scaling in time beyond the critical
fragments. In the second casd;E&1) it is the coalescence dimension with all critical exponents remaining constant for
of one-dimensional objects, i.e., highly correlated strings ofd=3. In Fig. 13 we illustrate with a @ section the effect of
contiguous points, that generate the new closed interfacdbe 3d QTF model dynamics on a system with initial mass
leading to fragmentation. 64°. The average fragment sizét)) scales with time as
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FIG. 12. The same as in Fig. 4 but for the QTF modeldin

=3 on a system of initial mass 84The averages are on 32 FIG. 14. The same as in Fig. 5 but for thd  TF model. The

samples. See Sec. Il B for details. initial mass of the system was $4nd the average is on 32 equiva-
lent experiments. The straight line represents the bestsjit
(s(t))~t"%, z=45*0.2, 0.13<t/t; <1, (13 ~t7%,z=4.5+0.2. See Sec. |l B for details.
max

as shown in Fig. 14. Both scalings occur within similar in- b€ing just the values of the exponenbbtained from frag-
tervals of the variablé/t,  as in the 21 case. mentation experiments involving collisions of high energetic
max

particles with heavy nuclgil9,38,39. In these nuclear frag-
mentation experiments, the standard practice is to fit the
fragment mass yield with a power law of the type given in
Eq. (14) with 2.3<7<2.6. Obviously, compared to the
masses of the systems used in our simulations, nuclear frag-
mentation uses systems of very small magses., 209 par-
n(s)~s7, 7=2.1+0.1. (14)  ticles in a typical C+Au high energy collision Conse-
quently, the value of the exponentind even its existence in
The 3d exponentr=2.1 is in excellent agreemeifivithin ~ nuclear experiments must be taken with caution.
the statistical fluctuationswith the corresponding exponent  Finally, in Fig. 16 we give the time dependence of the
for 3d percolation[37] (7=2.189). The exponent=2.1is  number of fragments of masses- 1, 2, and 4n4(t):
somewhat larger than the exponents usually reported in the

The distributionn(s) of fragments at the time of maxi-
mum diversity for a cubic system of initial mass®6dver-
aged on 32 similar experiments is given in Fig. 15. The
distributionn(s) obeys a scaling as in two dimensiofisg.
(10)], with

fragmentation literaturd8,9,20,22,31,32,35 an exception ng(t)~t"s, with ws=ws’, w=4.0,y=0.30, (19
5 _e sl [ [ 100000 g—r——rrry oo oo
" A R I 1. :
o - I. ‘ -
EI .'1. - - " - 10000-: +
l. [ - [] - E
.‘:l | . 1000-; 3
. s §
- . . 3
- .* n(s) 100 E ]
Ill a
.r 10 -§
am . ﬂhlrl 15 3
by deas ]
f - n 0,1-5 E
L™= d |'I 1 10 100
s

FIG. 13. Typical distribution of fragments in a single realization
of the 3d QTF model. The figure refers to ad2section made at FIG. 15. The same as in Fig. 9 for thel TF model. The
half-height on a system with initial mass %64t the time of maxi-  straight line represents the best fit to the data:s™ 7, 7=2.1+0.1.
mum diversity of sizes. See Sec. Il B for details.
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ML R R TABLE |. Values of the critical exponents, z, 7, w, and v,
] defined in the scaling relations Ed$), (6), (10), and(11), for the
QTF model in dimensionsl=2 andd=3, as well as for other
100004 3 fragmentation models and experimental data cited in Secs. Ill A and
B. The topological dimensiod; was introduced in the end of Sec.
I A.
1000-E -E
n, 3 d dr v z T w vy
100 QTF 2 0 3.7 3.9 1.7 3.7 0.30
model 3 0 4.0 4.5 2.1 4.0 0.30
Ref.[12] 2 0 3.6 3.5 1.6 3.6 0.28
105 r 3 0 4.5 4.4 1.9 4.5 0.28
Ref.[22] 2 1 1.0 1.0 1.8 - -
1 Ay ————rrry — Ref.[35] 2 1 0.9 1.3 1.7 0.9 0
20000 t 1000000 5000000 3 1 1. 8 2. 5 2 O 1. 8 0
Ref.[36] 2 1 1.2 1.2 - 1.2 0

FIG. 16. Time dependence of the distribution functio(s,t),
for s=1(0),2(A), and 4(d), obtained from simulations on a lat-
tice of 64 sites (averages on 32 samp)esThe continuous line IV. SUMMARY AND CONCLUSIONS

rgpresents the total number of.fragmeN(s). See, for comparison, We have presented the results of a nonthermal quantum

Fig. 10 and Sec. Il B for details. fragmentation dynamics in two- and three-dimensional com-
pact systems making explicit use of tunneling of particles

that is, essentially the same distribution for the QTF model irthrough potential barriers at zero temperat(@dF mode).

d=2 [Eq. (11)], and the classical fragmentation model dis- This model is complementary to a classical dynamics previ-

cussed in Ref[12]. The exponentg and 7 in d=3 [Egs. ously studied 12] in which particles perform classical tran-

(13) and (14)] are somewhat larger than o2 [Egs. (6) sitions over the barrier at finite temperature. These models

: _ present several static and dynamic scaling relations, with
and(10)]. Furthermore, as observed k-2, the four expo similar critical exponents in both classical and quantum do-

nentsv, z, 7, andw of the QTF model ind=3, are essen- ain The time evolution of the total perimetarea of the
tially the same exponents obtained in the classical fragmen;agments exhibit qualitatively different behaviors in two and
tation dynamics of Ref[12]. For the convenience of the three dimensions in the QTF model. The critical exponent
reader, the values of the exponems, 7, w, andy shown  in the differential distribution of fragments of massn(s)
in Egs.(5), (6), (10), and(11) are exhibited fod=2 and 3in  —s~7 in d=3, has the value=2.1, which is not signifi-
Table |. These exponents are compared with the correspondantly different from the exponent obtained in many experi-
ing values found in other fragmentation models cited in thisments involving fragmentation of heavy nuclei after high
section, as well as with the experimental data of R22]. energy collisiong19,38,39. The overall characteristics of
The QTF model studied in this article makes use of nonthe QTF model suggests that it can be relevant in explaining
thermal processes in compact systems, introducing explicithgxperimental data of nuclear fragmentation as well as in
quantum tunneling in the fragmentation dynamics. The exismany other fragmentation processes controlled by quantum
tence of metastable states separated by a potential barrigrechanics, and in many out-of-equilibrium dynamics.
from other states is a common feature in physics and it is
particularly important in nuclear fragmentation. This fact
suggests that the QTF model can be of general interest in This work was supported in part by Conselho Nacional de
nuclear physics to explain the experimental data of maspesenvolvimento Cierfico e Tecnolgico, Financiadora de
yields of nuclear fragmentation without resort to equilibrium Estudos e Projetos, Fund@acde Apoio aPesquisa do Estado
liquid-gas phase transitions, percolation structures, and othele Sa Paulo, and Coordenaz de Apoio aos Professores do
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